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Abstract provide a solution, the problem-solver may miss an
alternative solution of higher quality - one that could

Machine learning approaches to knowledge compilation seek to have been generated using the original (non-learned)
improve the performance of problem-solvers by storing problem-solving knowledge. For instance, in a planning
solutions to previously solved problems in an efficient, domain, the problem-solver may miss the derivation of a
generalized form. The problem-solver retrieves these learned higher-quality plan, if a lower-quality plan has been
solutions in appropriate later situations to obtain results more learned earlier. The following example from the
efficiently. However, by relying on its learned knowledge to Groundworld domain (Stobie et al., 1992) illustrates this
provide a solution, the problem-solver may miss an alternative phrnomenon. Groundworld is a two-dimensional, multi-
solution of higher quality - one that could have been generated agent simulation domain in which both space and time are
using the original (non-learned) problem-solving knowledge.
This phenomenon is referred to as the masking effect of learning. represented as continuous quantities. The principal

features in this world are walls, which block both
In this paper, we examine a sequence of possible solutions for fe mes in visior. arently, whic blockdwoth

the masking effect. Each solution refines and builds on the involves two agents: an evasion agent and a pursuit agent.
previous one. The final solution is based on cascaded filters. ioe evasion agent and a pusuit agnt
When learned knowledge is retrieved, these filters alert the The evasion agent's task is to reach its destination from
system about the inappropriateness of this knowledge so that the its starting point, without getting caught by the pursuit
system can then derive a better alternative solution. We analyze agent, and to do so as quickly as possible. The pursuit
conditions under which this solution will perform better than the agent's task is to catch the evasion agent. Both agents
others, and present experimental data supportive of the analysis. have a limited range of vision. When the two agents are in
This investigation is based on a simulated robot domain called visual range, the pursuit agent starts chasing, while the
Groundworld.I evasion agent attempts to escape by hiding behind some

1. Introduction wall, from where it replans to reach its destination.
Knowledge-compilation techniques in the field of Figure 1-1-a shows part of an example scenario from

machine learning seek to improve the performance of Groundworld. The thick straight lines indicate walls.
problem-solvers/planners by utilizing their past Here, the two agents are within visual range. To avoid
experiences. Some examples of these knowledge- capture, the evasion agent uses a map to create a plan
compilation techniques are explanation-based (shown by dashed lines) to hide behind a wall. The plan
generalization (EBG/EBL) (DeJong and Mooney, 1986, is stored in learned rules, to be retrieved and reused in
Mitchell, Keller, and Kedar-Cabelli, 1986), chunking similar later situations. The situation in Figure 1-1-b is
(Laird, Rosenbloom, and Newell, 1986a), production similar and the learned rules directly provide a plan to the
composition (Anderson, 1983, Lewis, 1978), macro- hiding spot. However, by relying on these learned rules,
operator learning (Fikes, Hart, and Nilsson, 1972, Shell the evasion agent misses a closer hiding spot (denoted by
and Carbonell, 1989), and analogical and case-based X). If the evasion agent had confronted the problem in
reasoning (Carbonell, 1986, Hammond, 1986). These Figure I-i-b without its previously learned rules, it would
techniques store experiences from previously solved have planned a path to the closer hiding spot. However,
problems in an efficient, generalized form. The problem- due to its learned rules, the evasion agent follows a low
solver then retrieves these learned experiences in quality plan. While the lower-quality plan allows it to
appropriate later situations so as to obtain results more hide successfully, there is a significant delay in its hiding,
efficiently, and thus improve its performance. which in turn delays it in reaching its real destination.

However, by relying on its learned knowledge to This effect, of using a low quality learned solution, has
been observed for some time in humans, where it is
referred to as Einstellung (Luchins, 1942). Modeling

"This research was supponed under subcontract to Carnegie Mellon University and Einstellung in computer simulations is an important
die University of Southern California from die Univenity of Michigan as par of aspect of capturing human skill acquisition (Lewis, 1978).
conltf N=OI4.92-K-2015 from the Defentse Advanced Research Projects Agency More recently, Clarke and Holte (Clark and Holte, 1992)
(DARPA) and the Naval Research Laboratory (NRL). The Groundworld simulator
used in this paper was developed by Charles Dolan of Hughes Al centr. Th report this effect in the context of a Prolog/EBG system.
simulated robou in Groundworld we developed in coltaioratot with lain Stobie of where they call it the masking effect, because the learned
the University of Southern California.
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500 2. Masking and Overgenerality
The masking effect arises because, while generating a

Pursuit agent new learned rule (i.e., at generation time), the system may
400 fail to capture all of the knowledge that was relevant in

deriving a high-quality solution. This may occur, for
Evasion agent example, because the requisite knowledge is only implicit

300 - .in the problem solving, or because it is intractable to
capture the knowledge. Either way, the learned rule may
"be missing some knowledge about the exact situations

200 Hiding destination where its application will lead to a high quality solution.
Thus, when the learned rul,. "j retrieved (i.e., at retrieval
time), it may apply even though it leads to a low quality

300, solution.

(a) Learned hiding plan. This is clearly an instance of overgenerality (Laird,
Rosenbloom, and Newell, 1986b); however, this

800 overgenerality is with respect to producing a high quality

solution, not with respect to producing a correct solution.
That is, these learned rules do not lead to a failure in task

Pursuit agent performance. For instance, in Figure 1-1-b, the learned
700 rules that lead to masking do not result in a failure in

Evasion agent hiding, even though a closer hiding place is missed.

- - " The two classical types of solutions to overgenerality
600 . are: (1) avoid it by learning correct rules, or (2) recover

"from it by detecting the performance failures they

Hiding destination engender and then learning patches for those situations.
Clarke and Holte's approach is of the first type. In their
Prolog-based system, knowledge about solution quality is

100 200 300 400 $00 implicit in the ordering of the Prolog rules. Their EBG

(b) The masking effect. implementation fails to capture this knowledge while

Figure 1-1: The masking problem when hiding: approx learning new rules, and leads to the masking effect. The
15% of the Groundworld scenario is shown. key feature of their solution is, at generation time, to order

the learned and non-learned rules according to solution
knowledge masks the original problem-solving quality. This ordering is guaranteed to remain valid at
knowledge. However, in contrast to the psychological retrieval time, so the highest quality solution can be
work, Clarke and Holte's goal is not to produce this retrieved simply by selecting the topmost applicable rule
effect, but to eliminate it. from the ordering.

The hypothesis underlying the work described here is In general, solutions of type I - which we shall
part way between these two perspectives; in particular, henceforth refer to as generation-time exact or GT-exact
the assumption is that masking (Einstellung) is in its solutions - require capturing all of the relevant
essence unavoidable, but that there are effective strategies knowledge into the learned rules at generation time.
that an intelligent system can use to minimize its negative However, in complex domains, it can be extraordinarily
consequences. Note that a low-quality solution produced difficult to do this; that is, tractability problems result.
due to masking is not always problematical. For instance, Consider a second example from the Groundworld
in real-time situations, a low-quality solution may be domain (Figure 2-1). In Figure 2-I-a, the evasion agent
acceptable, as long as it is produced in bounded time attempts to reach its destination, using a map to plan a
(Korf, 1990). However, in other situations, a good quality path through a set of regions (Mitchell, 1988). The path
solution has a much higher priority and hence avoiding (shown by a dashed line) is chosen so as to be the shortest
the masking effect assumes importance. one that avoids traveling close to the ends of walls -

We start by motivating the overall hypothesis by these are potential ambush points that may not allow the
examining the relationship of masking to overgenerality, evasion agent sufficient maneuvering space to reach a 0
looking at some of the existing approaches for dealing hiding place before it is caught. In this particular
with this overgenerality and discussing the problems these instance, the evasion agent has no information about the
approaches have. We then propose a sequence of three pursuit agent's position, and hence cannot take that into
new approaches to coping with masking, based on the account while planning the path; however, the pursuit
concepts of approximations, filters, and cascades of agent is far enough away that it cannot intercept the
filters. This is all then wrapped up with some analysis evasion agent anyway.
and backup experiments comparing these approaches. The rule learned from the path-planning process in



1o00 correct learned rule would need to capture exactly the
circumstances under which the path is of low quality; that
is, those circumstances in which the pursuit agent is in a

-.. known location from which it can intercept the evasion
agent's path. For example, the overgeneral rule could be

Eva augmented with explicit disabling conditions of the form:
m I Evasion agerE (know pursuit agent in region-X), (know pursuit agent in

Destination region-Y) and so on. These disabling conditions avert the
50ooi - retrieval of the learned path if the pursuit agent is known

to be in any of the regions from which it could intercept
the path traversed.

While this approach seems plausible here, there are two

f problems which tend to make it intractable. First, locating
all possible disabling conditions, i.e., positions of the
pursuit agent for which the plan is of low-quality,

Pursuit genj involves a large amount of processing effort. This is a
long path, and there are a variety of positions of the500o 1000 pursuit agent which threaten the path. Second, a large

(a) Learned plan. number of disabling conditions can severely increase the

lwo match cost of the learned rule, causing an actual
slowdown with learning (Tambe, et al., 1990). TheIl problems become even more severe in intractable
domains. For example, in the chess end-game domain, it

- is effectively impossible to correctly condition a learned
plan at generation time so as to ensure its exact retrieval

Evasion agent (Tadepalli, 1989). As a result, at retrieval time, the
SI learned plan may apply, but it does not always lead to aDestination successful solution. And further in incomplete domainsS---N-- - - the relevant knowledge may not even be available at

Pursuit agent generation time. Together these problems limit the
feasibility of the GT-exact approach to relatively simpleI-f domains.

The second general class of existing solutions to
overgenerality are the refinement (or recovery) strategies
(Gil, 1992, Huffman, Pearson and Laird, 1991, Chien,

00 1989, Tadepalli, 1989). However, these solutions all
0 So low0 depend on explicit detection of failures at planning or

(b) The masking effect. execution time (e.g., failure in forming or executing a

e2-1: Masking when trying to reach destination, plan) to indicate the incorrectness of a rule, and thus to
Figure -trigger the refinement process (Huffman, Pearson and

Figure 2-1-a captures a plan - a generalized sequence of Laird, 1991). While this works for overgeneral solutions
regions through which the agent must traverse - that that produce incorrect behavior, with the masking effect
transfers to the situation in Figure 2-1-b. In this situation, the learned solutions are only of low quality, and do not
the plan leads to interception by the pursuit agent. Such lead to explicit failure. Without an explicit failure, the
interceptions occur in this world, and are by themselves a refinement process simply cannot be invoked.
non-issue - interceptions do not lead to failure (capture) (Furthermore, fai.are-driven learning may not always be
as long as there is enough maneuvering space for the right strategy, e.g., in Groundworld, failure is
successful hiding. However, in this case masking occurs extremely expensive - it leads to capture by the pursuit
because the evasion agent has knowledge about the agent!) Thus, this class of solutions does not look
location of the pursuit agent - from an earlier encounter feasible for masking problems.
with it - so it should have been possible to avoid this 3. New Approaches to Masking
interception, and the resultant time lost from hiding and The previous section ruled out refinement stratgies
replanning. Without the learned rule, the evasion agent and raised tractability issues with respect to GT-exact.
would have formed a different plan in Figure 2-I-b, one This section introduces a sequence of three new
that would have avoided the area around the pursuit agent, approaches: (I) GT-approximate takes the obvious step of
allowing it to reach its destination quickly. avoiding the intractability of GT-exact by approximating

To apply the GT-exact solution to this problem, the the disabling conditions; (2) RT-approximate improves on



GT-approximate's real-time characteristics by using the can simply ignore this mark and use its learned solution.
approximations as retrieval-time filters; and (3) RT- Where do these filters come from? One "top-down"
cascade refines RT-approximate by reducing the amount possibility is that they arise from explicit generation-time
of replanning. assumptions, much as in GT-approximate. For example,
3.1. Approximating Disabling Conditions if it is known that the planning proceeded under the

GT-approximate overcomes the intractability issues assumption that no knowledge is available about the
faced by GT-exact by using overgeneral approximations location of the pursuit agent, then this assumption could
(simplifying assumptions) about the exact situations for be captured as a filter and associated with the learned
which the learned rules lead to low quality solutions. In rule. Though existence of such location knowledge at
the path-planning example, this involves replacing the set retrieval time does not necessarily mean that the plan will
of exact disabling conditions by a single, more general, be of low-quality, the filter does at least ensure that the
approximate condition - (know pursuit agent's position) plan will not suffer from the masking effect because of 0
- thus disabling the learned rule if any knowledge about this location information.
the pursuit agent's position is available. Inclusion of only A second "data-driven" possibility is to use
a single disabling condition also alleviates the problem of Asignificant external events as the basis for filters.
high match cost. Essentially, the system notices some external object/event

For this solution to be effective in general, the system which may suggest to it that a retrieved solution is
must be able to derive good approximations. Fortunately, inappropriate. For instance, in the hiding example, if the •
there is already considerable amount of work on this topic system notices a closer, larger wall in front, then this may
that could provide such approximations, e.g., (Elkan, suggest to it that its retrieved hiding plan is inappropriate.
1990, Ellman, 1988. Feldman and Rich, 1986). However, This strategy is related to the reference features proposed
there are still two other problems with GT-approximate. in (Pryor and Collins, 1992), which are tags that the
First, due to the overgeneral approximations, it may system associates with potentially problematical elements
overspecialize a learned rule, disabling it from applying in its environment. Later activation of a reference feature
even in situations where it leads to a high quality solution. alerts the system to a potential negative (positive)
For instance, suppose the rule learned in 2-1-a is to be interaction of that element with its current plan.
reused in 2-1-a, and (know pursuit agent's position) is fhe biggest problem with RT-approximate is tot it
true. In this situation, GT-approximate w'ill disable the suffers from the same overspecializaton problem that
learned rule, even though the pursuit agent is far away, dogs GT-approximate; that is, the filters are overgeneral,
and the learned rule is thus appropriate. Second, GT- and can eliminate plans even when they would yield high-
approximate does not facilitate the speed-quality tradeoff quality solutions.
that is essential for real-time performance (Boddy and
Dean, 1989). In particular, the disabling conditions used 3.3. Cascading Filters
here simply disable learned rules in situations where they RT-cascade overcomes the overspecialization problem
lead to low quality solutions, forcing the system to derive of RT-approximate by cascading a more exact filter after
a new solution from scratch. However, in some real-time the approximate filter. It first applies the approximate
situations, a low quality response is perfectly acceptable filter to the retrieved solution. If this indicates that the
(Korf, 1990), e.g., in the hiding situation, the evasion solution may be of low quality, then the exact filter is 0
agent may find a low-quality plan acceptable if the pursuit applied to verify the solution. If the exact filter also

agent is close and there is no time to generate a better indicates that the retrieved solution is inappropriate, then
plan. the system replans from scratch. (Sometimes, a better

3.2. Approximations as Retrieval-Time Filters alternative may be to modify and re-use the existing plan

RT-approximate alleviates the real-time performance (Kambhampati, 1990).) If the exact filter indicates that the

problem faced by GT-approximate by converting the solution is appropriate, then the original solution is used,

(approximate) disabling conditions into (approximate) thus overcoming the overspecialization introduced by the

retrieval-time filters. 2 These filters quickly check if a approximate filter.

learned solution is of low quality after its retrieval. For As an example, consider what happens when RT-
instance, (know pursuit agent's position) can be used as cascade is applied to the two Gfoundwodd scenarios
an approximate filter for the path-planning example. If introduced earlier. In the path-planning scenario, the
this filter is true at retrieval time, then the retrieved plan is approximate filter is (know pursuit agent's position) and
marked as being one of possibly low quality. In a time- the exact filter is a simulation of the plan that verifies 0
critical situation, such as the hiding situation, the system whether the pursuit agent's position will lead to an

interception. In the hiding scenario, the approximate filter
is (wall in front of evasion agent). Here, the exact filter
verifies that the wall actually is a hiding place (e.g.. it will

2 FItering strategies have also been used in other agent architectures. not be so if the pursuit agent is located between the wall
For example. in IRMA (Bratmam. et al.. 1988). filiers decide if an external and the evasion agent), and that the wall is close. In both 0
event/opportunity is compatible or incompatible with the plan the system the scenario in Figure 2-1-b and the one in Figure l-1-b
has committed to.

a n na mu mmltntttlnltt NI~n um U a H I0



the approximate filters detect possibly low quality plans. exploited) in some other systems (Huffman, Pearson and
The exact filters are then run, and since they concur, Laird, 1991). Note that this high cost of GT-exact also
replanning occurs, yielding the plans in Figure 3-1. In rules out a GT-cascade solution, which would combine
both of these cases RT-cascade yields the same qualitative the exact and approximate disabling conditions at
behavior as would RT-approximate; however, in other generation time.
circumstances RT-cascade would have stayed with the We have focused on applying the cascaded filters after
original plan while RT-approximate replanned. In either the retrieval of a learned solution, but before its
event, this experience can be learned so as not to repeat execution/application. However, the cascaded filters
the exact verification (and replanning) on a similar future could be employed during or after execution as well. For
problem. instance, in the path-planning example, the cascaded

1oo0 filters could be invoked only if the pursuit agent actually
intercepts the path. Here, this interception itself acts as a
bottom-up approximate filter. The exact filter then

verifies if the path is a low quality one (e.g., this path
could be the best the system could plan if it had no prior

p - - knowledge about the pursuit agent, or this was the only
1 path possible, etc.) This experience can be learned, and

Evasion agent retrieved in future instances. However, one key problem
500 I~estination with this strategy is that it disallows any preventive action

i an on the problem at hand.Pursuit agent
The key remaining question about RT-cascade is how

well it performs in comparison to RT-approximate; thatI is, whether the extra cost of performing the exact
verifications in RT-cascade is offset by the replanning
effort that would otherwise be necessary in RT-
approximate. This is a sufficiently complicated question

00 to be the topic of the next section.
o 1000 4. RT-approximate vs RT-cascade

(a) Overcoming the masking effect in path-planning. Two factors determine whether RT-cascade
outperforms RT-approximate. The first is the amount of

o00 overspecialization/inaccuracy in the approximate filter.
Without such inaccuracy, the exact filter is simply

* unnecessary. The second factor relates to the cost of

700 Pursuit agent (re)derivation. Since the exact filter is intended to avoid
the (re)derivation of a solution, it must cost less than the

Evasion agent rederivation to generate savings. Winslett (Winslett,
-, 1987) shows that while, in the worst case, derivation and

600 Hiding destin verification processes are of the same complexity, in
general, verification may be cheaper.

Let us consider two systems. The first, S-approximate,
uses the RT-approximate approach; and a second, S-

100 200 300 400 s00 cascade, uses the RT-cascade approach. Now, consider a

the masking effect in hiding. problem-instance where the approximate filter is
(b) Overcoming ainaccurate, i.e., it indicates that a solution is of low
Figure 3-1: Overcoming the masking effect. quality, but it is actually not of low quality. Since S-

The exact verification in RT-cascade may appear approximate depends on only the approximate filter, it
siTilar texact ; verifati in abigdifee may appear will derive a new solution from scratch, and it will incursimilar to GT-exact; but there is a big difference in their the cost of Cdi, On tecnrrwt -~ e h

computational costs. In the exact verification process, the texct ofilerwil the contrary, with S-cascade, the
system reasons only about the single situation that exists exact filter will be used to verify the quality of the
at re.'rieval time. In contrast, GT-exact reasons about all solution. This verification will succeed, indicating that the
possible potentially problematical situations that may solution is actually not of low quality. Therefore, o -
arise at retrieval time. For instance, in the path-planning cascade will not derive a new solution, and will only incur
example, GT-exact requires reasoning about all possible the cost of vsUc for successful verification. Assuming
positions of the pursuit agent that can lead to an Cvsucc is less than Cdm,,e (as discussed above), this
interception, as opposed to a single position of the pursuit situation favors S-cascade. It will obtain a speedup over
agent. This difference in reasoning costs at generation S-approximate of: C&eive/Cvsucc.
time and retrieval time have also been observed (and



Thus, a cascaded filter can lead to performance bound on the accuracy of the approximate filter.
improvements. However, now consider a second problem
instance, where the approximate filter is accurate, i.e., it Pr. Cdenve CVsucc CvfaiI speed slowdn Upper
indicates that a solution is of low quality, and it is actually No cascade cascade bound
of low quality. S-approximate will again derive a new 1 340 30 II 11.3 1.03 0.96
solution from scratch, with cost of Cderive. S-cascade will 2
again use an exact filter to verify the quality of the 2 276 38 il 7.3 1.04 0.95
solution. However, now since the solution is of low 3 234 35 6 6.7 1.02 0.97
quality, the verification will fail, at the cost of Cvfafl. S- 4 176 26 8 6.7 1.04 0.95
cascade will then derive a new solution, at the cost of
Cdenve, so that the toal cost for S-cascade will be: 5 83 16 -- 5.2 -- --

Cderive+Cvfaij. This situation favors S-approximate. It will T
obtain a speedup over S-cascade of: Table 4-1: Experimental results for the path-planning example.
(Cdnhe+Cvfail/Cdenve. The first row in the table shows the data for the start

Thus, if the approximate filter functions inaccurately and destination points as shown in Figure 2-1-a. Here, the
for a problem instance, S-cascade outperforms S- value of 30 for Cvsuc€ represents a case where the pursuit
approximate; otherwise. S-approximate performs better. agent is located far to the north-east of the evasion agent,
In general, there will be a mix of these two types of so that it will not intercept the planned path. The value of 0
instances. Let Nac€ be the number of instances where the II for Cvtfi was obtained for the case where the pursuit
approximate filter performs accurately, and Ninacc be the agent is !ocated as shown in Figure 2-1-b. The other four
number of instances where it performs inaccurately, rows represent four other problems, with decreasing path
Simple algebra reveals that if S-cascade is to outperf"mrm lengths.
S-approximate, then the accuracy of the approximate filter The table shows that in cases where the approximate
[Na/(Nac+Ninacc)] must be bounded above by: (Cderive - filter is inaccurate, the system derives good speedups due
Cvsu.)/(Cvfajj + (Cderive - C,scc)). If the approximate to the cascaded filter. In cases where the approximate
filter is any more accurate, S-approximate will outperform filter is accurate, the system encounters very small
S-cascade. (It may be possible to improve this bound slowdowns due to the cascaded filter. The last column in
further for S-cascade by applying the exact filter the table shows that even if the accuracy of the
selectively; that is, skipping it when Cdenfve is estimated to approximate filter is as high as 95-97%, the cascaded
be cheaper than Cvsucc.) filter will continue to provide the system with some

We do not yet know of any general procedures for performance benefits. The approximate filter that we have 0
predictinog yet prori ofaccure any galprox ed s fitr w used - (know pursuit agent's position) - is not aspredicting a prnori hcwv accurate an approximate filter will accurate as this. For the five problems above, its actual

be, nor how low this accuracy must be for RT-cascade to accuracy asied For the fivs problem to

outperform RT-approximate. So, we have instead 28% for the last problem. We could employ an alternative
investigated this question experimentally in the filter, but its accuracy would need to be more than

Groundworld domain. Our methodology has been to 95-97% before the cascaded filters become unusefu for

implement RT-cascade as part of an evasion agent that is this problem.
constructed in Soar (Rosenbloom, et al., 1991) - an

integrated problem-solving and learning architecture, The last row in Table 4-1 shows a low CdMve, for
which uses chunking (a variant of EBL) to acquire rules source and destination points that are close. Here, the
that generalize its experience in solving problems - and speedup due to the cascaded filters has decreased.
then to use this implementation to gather data that lets us However, the other entries in this last row are blank. This
approximate the parameters of the upper-bound equation, is because with such close source and destination points,
at least for this domain. verification failure is instant: the pursuit agent is in visual

Table 4-1 presents the experimental results. Since the range and starts chasing. In such cases, the evasion agent

values for Cdenve, CvfaiI, and Cvsucc vary for different start abandons its path planning, and instead tries to hide.
and destination points, five different sets of values were For the hiding example, Cdenve is 14, while CV= and
obtained. The first, second and third columns give Cvffl are both 3. These values show little variance with
Cdenve, C,,ucc and Cvfai respectively (measured in different hiding destinations. This provides a bound of 0
number of simulation cycles). The fourth column gives 73% on the accuracy of the approximate filter. If the
the speedup - Cdenve/Cvsucc - obtained by the system approximate filter is any more accurate than this, the
due to the cascaded filter, when the approximate filter is cascaded filter is not beneficial. We estimate the accuracy
inaccurate. The fifth column gives the slowdown - of our approximate filter - (wall in front of evasion
(Cdenve+Cfail)/Cdenve - observed by the system due to agent) - to be approximately 25%.
the cascaded filter, when the approximate filter is
accurate. The last column in the table is the computed



5. Summary and Discussion problem of overfitting in inductive learning, and views
This paper focused on the masking problem in that as part of a general utility problem. This overfitting

knowledge compilation systems. The problem arises problem could actually be viewed as involving
when a system relies on its learned knowledge to provide knowledge-level (inductive) learning, and creating a
a solution, and in this process misses a better alternative knowledge-level utility problem (degradation of the
solution. In this paper, we examined a sequence of a,-curacy of learned concepts). Given this perspective, we
possible solutions for the masking effect. Each solution can create a 2x2 table, with the horizontal axis indicating
ref'ned and built on the previous one. The final solution is the type of utility problem, and the vertical axis indicating
based on cascaded filters. When learned knowledge is the type of learning (Figure 5-1).
retrieved, these filters alert the system about the
inappropriateness of this knowledge so that the system
can then derive a better solution. We analyzed conditions Type of utility problem
under which this solution performs better than the others, Symbol-level Knowledge-level
and presented experimental data supportive of the
analysis. Slowdown MaskingSymbol in EBL effect

Much more needs to be understood with respect to level
masking. Concerns related to masking appear in different Type of
systems, including some non-learning systems. One learning Average Overfitting

Knowledge growth in inductive
example of this is the the qualification problem (Ginsberg level effect learning
and Smith, 1987, Lifschitz, 1987, McCarthy, 1980),
which is concerned with the issue that the successful Figure 5-1: A broader perspective on the utility problem.
performance of an action may depend on a large number
of qualifications. The disabling conditions for learned The masking effect may now be viewed as involving
rules (from Section 2) are essentially a form of such symbol-level learning (knowledge compilation), but
qualifications. However, the solutions proposed for the creating a knowledge-level utility problem (degradation in
qualification problem have a different emphasis - they solution quality). Finally, the average growth effect that is
focus on higher-level logical properties of the solutions. observed in some systems (Tambe, 1991) provides an
For instance, one well-known solution is to group example of knowledge-level learning causing a symbol-
together all of the qualifications for an action under a level utility problem. Here, a large number of new rules
single disabling abnormal condition (McCarthy, 1980, acquired via knowledge-level learning can cause a
Lifschitz, 1987). This condition is assumed false by symbol-level utility problem. We hope that by exploring
default, unless it can be derived via some independent such related issues, we can obtain a broader
disabling rules. However, issues of focusing or limiting understanding of the masking effect.
the reasoning involved in these disabling rules are not References
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